
About

Team

Old News

Mods
- OSP Tourney Q3A
- OSP Tourney Q2
- King of the Hill
- OSP Rocket
 Olympics
- OSP Wolf

- Download

DM Maps

Old DOOM
Page

Tutorials

Extras
- Mame Front End
- Cycling

Contact Us

Home

GreenMarine's Object
Oriented

Logic Tutorial
(with specific references to OO's place in UnrealScript)

"For the layprogrammer." - GreenMarine

"You can use the pepper grinder to create pepper by turning
the crank...BUT, a pepper grinder is _not_ pepper, so you
MUST NOT TRY TO EAT IT!" - Tim Sweeney, Epic
MegaGames, Inc.

You can always find the latest version of this document at
http://www.OrangeSmoothie.org/tuts/GM-OOtutorial.html.

Drafted by: Brandon "GreenMarine" Reinhart
Contact: greenmarine@planetunreal.com
Version: 1.0

ToDo

Constructors
Destructors
State
Advanced Techniques

Introduction

Talking on #UnrealED and #UnrealScript (both active EF-Net channels
on IRC) it has come to my attention that a lot of interested UnrealScript
hackers aren't very familiar with Object Oriented (OO) logic. In an
attempt to do my bit o' public good, I'm writing this tutorial as a short
guide to thinking in OO. Hopefully, by the time you are done reading
this, you'll have a strong enough grasp of Object Oriented Programming
(OOP) to work uninhibited with UnrealScript. From my experience, I
have learned that just by approaching a mod idea or problem with OO
design in mind, an answer is more easily found. I hope this tutorial is
useful to you. I will continue to update it for as long as I see necessary.
If you have any information or corrections than I urge you to email the
address above. I will be more than happy to include such items with
credit to the author. This is just the first in a series of useful tutorials
(called tuts by the in-crowd hehe) that I plan on authoring. Keep your
eyes peeled.

Legal

This tutorial may only be transferred by electronic means. It may not be
altered in any way, shape, or form without the express, written
permission of the author. It may not be included on any CD-ROM
archive without the express, written permission of the author. It may not
be used for any commercial purpose without the express, written
permission of the author. The contents of this document are Copyright
(c) 1998, Brandon Reinhart.

http://www.orangesmoothie.org/index.html
http://www.orangesmoothie.org/about.html
http://www.orangesmoothie.org/team.html
http://www.orangesmoothie.org/news.html
http://www.orangesmoothie.org/tourneyQ3A/
http://www.orangesmoothie.org/tourney/
http://www.orangesmoothie.org/koth/
http://www.orangesmoothie.org/rocketo/
http://www.orangesmoothie.org/rocketo/
http://www.orangesmoothie.org/wolf/
http://www.orangesmoothie.org/download.html
http://www.orangesmoothie.org/dmmaps/
http://www.orangesmoothie.org/doom/
http://www.orangesmoothie.org/doom/
file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/Nov%202007%20Web%20site/tuts/
http://www.orangesmoothie.org/OSPMameFE/
http://www.orangesmoothie.org/cycling/
http://www.orangesmoothie.org/contact.html
http://www.orangesmoothie.org/index.html

The Way Programmers Think

Programmers are a strange breed. They often forget to eat. They often
forget to sleep. They even tend to neglect their girlfriend/boyfriend (if
they are lucky enough to possess one *hint hint*) all the while
attempting to make rather unintelligent machines more intelligent than
any reasonable person would deem worthwhile. Programmers, you see,
are not reasonable people. This lack of reason is in part due to the
aforementioned lack of food, sleep, and sex, and also partly due to the
way programmers think. Programmers like to solve problems.
Specifically, programmers like to solve problems by changing the way
they think about the problem. Object Oriented Programming, which is
the focus of this tutorial, is one such way of solving problems. To
understand the OO method of solving a problem, we first have to
change the way we think about the problem.

Breaking It Up

Let's say you, as a programmer, have a problem. You want to write a
program that will build a car. Sounds tough doesn't it? Well it is,
building a car is certainly no trivial task, but half of the difficulty in
thinking of a solution is in the way we think of the problem. If you say
"I want to write a program that will build a car," you are probably
mentally overwhelmed by the immensity of the task! A car is made up
of thousands of parts! How can you possibly write a program that will
make all those parts? Thousands of parts? Ah ha! We've already started
to break it up. What if, instead of saying "I want to write a program that
will build a car," you said "I want to write a program that will build a
series of car parts and then assemble those parts." Still a daunting task,
but certainly more organized. This is what we call "breaking it up" or
"top-down programming." By breaking the core problem up into
successively smaller pieces, you are faced with many small, easy tasks
instead of one large, difficult task. If we were to leave the car analogy
and move to an Unreal analogy, one might say "I want to write a bot
that plays Unreal." A tough problem. However, if you break a bot down
into successively smaller pieces, you end up with a path-finding project,
a weapon-using project, and so on. This is the first step in taking an OO
approach to programming.

Getting Organized

Now that we've got a bunch of little tasks that make up our big task,
we've got to get organized. If you were to write your car program in the
classical C "functional" style, you'd have a lot of functions and a big
mess. You could clean it up by assigning certain parts of the car to their
own files, but that would still be pretty wild. How to we organize the
small parts of the big task? The solution is to change the way we think
of the parts of the problem. Let's look at the car analogy. We want to
build a car and we are going to do it by having one part of our program
build car parts and another part of our program assemble those parts
into a working car, right? Well what, exactly, is a car part? Its maybe a
mix of metal, plastic, smaller parts, and it has a specific
function...different car parts of the same type might be slightly
different. Basically, we could say that a car part is a generic type of
object. It isn't any specific object in particular, just a blueprint by which
we could manufacture the actual thing. Let's call this a "class."

The Class

In OO logic, a "class" is a description of what a thing might be if it
were created. A class is a generic template. It defines abstract properties

(the car part has color) but usually does not define the specific nature of
those properties (the car part is red). A class also defines the behavior of
an object. A series of special functions that the class owns define the
exact way in which an object you create works in your program. In
programmer speak, the abstract properties are called "instance variables"
and the behavior functions are called "methods." The process of taking a
class and making an object from it is call "instantiation." It is _very_
important to realize that a class is not an object, merely a blueprint by
which an object may be made. When you instantiate an object from a
class, you are creating a model from that blueprint.

Class Mechanics

In UnrealScript, we define a class through the "class declaration:"

 class MyClass expands MyParentClass;

The class specifier tells UnrealScript that you are starting to define a
new class. MyClass is the name of this class (it can be whatever you
want, preferably something meaningful, like CarPart). We'll get to the
rest in a bit.

After you've made your class declaration in UnrealScript you are
ready to define the class's instance variables. This is done by
listing a series of property variables:

 var int color; // Part color index number
 var byte manufacturer; // Manufacturer reference
value

You can find out the specific data types that UnrealScript supports
after you've read this tutorial by reading Tim Sweeney's
UnrealScript Language Reference at
http://unreal.epicgames.com/UnrealScript.htm. It might be smart
to separate your instance variables from the rest of the code with
a comment line like this:

 ///
 // Instance Variables for MyClass

This is just a matter of taste, but it won't hurt. Its usually a _good
thing_ to make your code more readable, especially if you want to
share it with others or come back to it later.

Defining methods for your new class are simular to defining
instance variables, just make a list of functions:

 function doAThing()
 {
 // Do some stuff in UnrealScript
 }

 function doAnotherThing()
 {
 // Another function that does something
 }

Once again, you might separate the method area of your class
from the rest of the code by using a comment line. It is also
highly suggested that you name your methods after their
functions. For example, a function that cleans your socks might
be called cleanSocks().

In UnrealScript, we call object instantiation "spawning." As such,
you use the Spawn() function to create a new object from a class
template:

 var actor MyObject; // variable to hold the object
 MyObject = Spawn(MyClass); // spawning the object

A Brief Discussion of Methods

Objects are independent collections of "interactive" data that sit in
memory. The keyword is _independent_. Each object does its
own thing. If you have a class called MyBot and you spawn two
objects from that class called BotA and BotB those two
instantiations don't know about each other. This leads us to the
next concept of Object Oriented Programming: objects edit
themselves.
When an object is spawned it is usually stuffed into a hash table
in memory, given a lookup key, and forgotten about. The system
uses the lookup key to find the specific object in the hash table if
you want to do something to it, but for all intents and purposes the
object is just sort of unavailable. Unavailable in the since that,
unlike a normal variable, you can't just change it. You cannot, for
example, rip open an object and change the contents of the
instance variables. (This is one of the ways in which objects are
different from structs in C++.) Instead, you have to tell the object
to change itself. This is done through the methods.
The methods of a class define the way an object will act when it
is spawned. If you want to change an instance variable of an
object, you have to have written a method in the class that allows
this to behavior to take place. Our CarPart class might have a
method that looks like this:

 function setColor(int newColor)
 {
 color = newColor;
 }

In this case, when the above method is called, the object takes the
int supplied as an argument and sets the color instance variable to
that value. The object alters itself. The syntax for calling an
object's method in UnrealScript looks like this:

 MyObject.setColor(15); // tell the object to call
it's setColor() method

Methods, Variables, and Object Security

Remember when I told you that an object alters itself? Well that
isn't entirely true. I wanted you to believe that so you would start
thinking about objects as independent entities in your
programming environment. It is possible, in fact, to change the
instance variables of an object directly:

 MyObject.color = 15;

Notice the difference. In the method case, we tell the object to
change itself and in the assignment case we change the nature of
the object directly. This presents another one of those "How
Programmers Think" issues. You're probably asking yourself if I
can just alter an object directly, why would I ever use a method to
do it? Well, think about it.
What if there were very special restrictions on the instance
variable "color"? For example, you might want the color variable
to only contain values from 1 to 10. Anything outside of that
range would maybe cause your program to act unpredictably. In
that case, it just wouldn't be a good idea to allow the object's user
to edit the color variable directly. Right? Even though _you_
might know that 1 to 10 are the only correct values for color,
someone else who uses your code might not. The solution is to
make the instance variable private, so that only the class itself can
change it:

 var private int color; // declare a private variable

The private specifier indicates that this instance variable is _only_
accessable by an object of this class. The object can change the
color variable from inside its own methods, but an external
assignment, like:

 MyObject.color = 15;

Would become an error no matter what the right hand value. This
allows you to control the input to your objects and more clearly
define their behavior. Now you could have your object return an
error code or take appropriate action if an invalid value was
passed to it through a method.

Class Families

Whew. Getting tired yet? This might be a good time to grab a Dr.
Pepper. We are just now getting the fundamental elements of
objects!
As you can see from the above (if you are a creative individual
and you must be if you are reading this), objects alone have a lot
of potential. Objects make it easy to break down a problem into
usuable parts. Nonetheless, it can still be difficult if you have to
manage lots of objects. This brings us to the fundamentals of
object oriented programming: The relationships between objects.
A good way to picture object relationships is through our car
analogy. The CarPart class certainly doesn't go very far in
describing what a CarPart is. Given what we know about objects
so far, we'd probably not even use CarPart...we'd have to write
classes like SteeringWheel that are more specific and useful.
Actually, this isn't quite the case. In our minds, CarPart has
already created a relationship to SteeringWheel. A steering wheel
is a kind of car part. Right? So what if the CarPart class defined
very generic methods and instance variables that all car parts used
and another class called SteeringWheel _expanded_ that
functionality?
In programmer speak we call this "the parent-child relationship."
CarPart is the "parent class" (or super class) of SteeringWheel. In
UnrealScript, we define a child class like this:

 class SteeringWheel expands CarPart
package(MyPackage);

See the expands specifier? It indicates that the class we are now
declaring (SteeringWheel) is a child class of CarPart. As soon as
Unreal sees this it forms a special relationship between the two
classes.

Fundamental I: Inheritance

What, exactly, does this parent-child relationship do for us, as
problem solvers? It simplifies the solution, that's what! By
creating a parent-child relationship between two classes, the child
class immediately "inherits" the properties and methods of the
parent class. Without you even having to type a line of code,
SteeringWheel contains all of the functionality of CarPart. If
CarPart has a setColor() method defined (as discussed above)
SteeringWheel has the same method. Inheritance applies to
instance variables, methods, and states.
This allows us to create what programmers call an "Object
Hierarchy" (or class family). Its a lot like a family tree:

 Object
 | expanded by
 Actor
 | expanded by

 CarPart
 | expanded by
 SteeringWheel

Object and Actor are special classes in Unreal described in Tim
Sweeney's guide. The full class family tree for Unreal is a
sprawling web of relationships as you can no doubt imagine. In
our example, we have a basic "is-a" relationship:

 A SteeringWheel is a CarPart.
 A CarPart is an Actor.
 An Actor is an Object.

Each successive layer of the family tree inherits and expands upon
the functionality and detail of the previous layer. This allows us
to easily describe a complex object in terms of its component
objects. It is important to realize that the relationship is not
commutative. A SteeringWheel is always a CarPart, but a CarPart
isn't always a SteeringWheel. Moving up the tree you get more
general and moving down the tree you get more specialized. Get
it? Good!
But wait a second...if we are building the car and a car is made up
of parts, where is the Car class? This brings us to an important
distinction in relationships: is-a vs. has-a. Clearly, a CarPart is
not a kind of Car. Therefore, the relationship "CarPart expands
Car" would be invalid. Rather, you would have a tree structure
that might look like this:

 Object
 |
 Actor
 / \
 Car CarPart
 |
 SteeringWheel

Car is a class derived from Actor, but it doesn't have a direct
relationship to CarPart (you might say they are siblings). Instead,
the internal definition of the Car class might include instance
variables that are CarParts. In this case, we have a has-a
relationship. A Car has a SteeringWheel, but a SteeringWheel is
not a Car. If you are ever designing a class hierarchy like this and
you get confused about object relationship, it is sometimes very
useful to phrase in the relationship in the "is-a" or "has-a" style.
As you can see, the relationship hierarchy allows us to do some
very interesting things. If we wanted to, for example, make a
more liberal definition of Car, we could add Vehicle:

 Object
 |
 Actor
 / \
 Part Vehicle
 / | | \
 CarPart AirPart Car Airplane

Pretty cool huh? Not only is it a great way to organize and
visualize data, but the benefits of inheritance mean we save time
that would normally be spent copying and rewriting code!

Fundamental II: Polymorphism

Poly what? Its more of that crazy programmer speak. (If you've
understood everything up until now, you are more a programmer
than you think.) Polymorphism is another one of the fundamentals
of object oriented programming. In inheritance, the child class
gains the instance variables, methods, and states of the parent
class... but what if we want to change those inherited elements?
In our car example, we might have a Pedal class that defines a
method called pushPedal(). When pushPedal() is called, the

method preforms a default behavior (maybe it activates the
breaks.) If we expand the Pedal class with a new class called
AcceleratorPedal, the pushPedal() method suddenly becomes
incorrect. An accelerator certainly shouldn't turn on the breaks!
(Or you're gonna have a lot of lawsuits when you release your
program, believe you me).
In this situation, we have to replace the behavior we inherited
from Pedal with something new. This is done through a process
called "Polymorphism" or "Function Overloading." You'll run
into this all the time when you write UnrealScript. To borrow an
explanation from Tim Sweeney:

"[Function overloading] refers to writing a new
version of a function in a subclass. For example, say
you're writing a script for a new kind of monster
called a Demon. The Demon class, which you just
created, expands the Pawn class. Now, when a pawn
sees a player for the first time, the pawn's
[SeePlayer()] function is called, so that the pawn can
start attacking the player. This is a nice concept, but
say you wanted to handle [SeePlayer()] differently in
your new Demon class."

To do this, just redefine the function in the child class. When the
class is instantiated, the object will have the new behavior, and
not the parent behavior. If you don't want anyone to redefine a
function you have added to a class, add the "final" specifier to the
function's declaration:

 function final SeePlayer()

This prevents the script from overloading the function in derived
classes and can be very useful in maintaining a consistant
behavior in code you write. Tim Sweeney notes that it also results
in a speed increase inside Unreal.

Bringing It All Together

So now you know the fundamentals of Object Oriented design
and have a good idea of how objects relate to one another. What
do you do next?
The best advice is to get hacking. Dive into the code and don't
come up for air even if the promise of food, sleep, or sex looms
near. Seek the zone. Or...you can always read Tim Sweeney's
guide to UnrealScript. It goes into much greater detail about the
syntax surrounding OO in Unreal. In addition, I suggest you find
other resources on the net discussing OO. As I develop this paper,
I'll try to come up with some good link, which I will list below.
There are a lot of subtle elements of OO that can only be learned.
Some aren't really supported by Unreal, some are. Some are
merely ways of thinking.
And that brings me to my closing point. OO is as much a way of
thinking as it is a way of programming. As you walk to school or
drive to work, try imagining the relationship between things you
see (a tree has leaves, a rose is a flower). This will greatly
enhance your understanding of OO. Create complex relationships
in your mind and then find ways of representing them in code.
To those who really understand it and really enjoy it,
programming is a mental, physical, and spiritual task. It might
sound wierd, but programming touches the fundamental ways in
which we think and solve problems. If you can think in OO, then
your mind is unrestricted when it comes to solving problems in
OO. The more you use it, the more you will come to realize it is

true.
OO can't solve everything, however. Just like any other way of
thinking, the Object Oriented paradigm ignores certain elements
of problem solving in order to strengthen its analogy to natural
systems. Most likely, however, you will not be faced with these
issues when you write UnrealScript, unless you are authoring one
helluva transcending mod.

- Brandon "GreenMarine" Reinhart, May, 1998

Notes

SkinDoggy notes that a class MUST extend some parent
class in UnrealScript.

Useful Resources

UnrealScript Language Reference
The OO FAQ

About the Author

Brandon Reinhart, known as GreenMarine in the
Quake/Quake2/Unreal scene is a dedicated mod hacker obsessed
with game and graphics programming. Brandon has authored the
King of the Hill modification for Quake2 and currently has
multiple Unreal projects planned, in addition to a technology
demonstration. Brandon is currently looking for employment in
the games industry.

Special Thanks

Epic MegaGames
Tim Sweeney
Dr. Pepper
Mr. Pibb
Cabaret Voltaire
Front Line Assembly
Nick Cave
SkinDoggy from #UnrealED for Corrections

History

May 27, 1998 - Made corrective changes.
May 27, 1998 - Version 1.0 in PlainText and HTML
May 27, 1998 - First Revision
May 27, 1998 - First Draft

Copyright (c) 1998, Brandon Reinhart

Copyleft 1998-2007 Orange Smoothie Productions

http://unreal.epicgames.com/UnrealScript.htm
http://www.cyberdyne-object-sys.com/oofaq2/
http://www.planetquake.com/osp/
http://en.wikipedia.org/wiki/Copyleft
http://www.orangesmoothie.org/index.html

	orangesmoothie.org
	GreenMarine's Object Oriented Logic Tutorial

